Determining cell type abundance and expression from bulk tissues with digital cytometry (2024)

  • Wagner, A., Regev, A. & Yosef, N. Revealing the vectors of cellular identity with single-cell genomics. Nat. Biotech. 34, 1145–1160 (2016).

    Article CAS Google Scholar

  • Shen-Orr, S. S. & Gaujoux, R. Computational deconvolution: extracting cell type-specific information from heterogeneous samples. Curr. Opin. Immunol. 25, 571–578 (2013).

    Article CAS Google Scholar

  • Newman, A. M. & Alizadeh, A. A. High-throughput genomic profiling of tumor-infiltrating leukocytes. Curr. Opin. Immunol. 41, 77–84 (2016).

    Article CAS Google Scholar

  • Aran, D., Hu, Z. & Butte, A. J. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 18, 220 (2017).

    Article Google Scholar

  • Racle, J., de Jonge, K., Baumgaertner, P., Speiser, D. E. & Gfeller, D. Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data. eLife 6, e26476 (2017).

    Article Google Scholar

  • Quon, G. et al. Computational purification of individual tumor gene expression profiles leads to significant improvements in prognostic prediction. Genome Med. 5, 29 (2013).

    Article Google Scholar

  • Angelova, M. et al. Characterization of the immunophenotypes and antigenomes of colorectal cancers reveals distinct tumor escape mechanisms and novel targets for immunotherapy. Genome Biol. 16, 64 (2015).

    Article Google Scholar

  • Becht, E. et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol. 17, 218 (2016).

    Article Google Scholar

  • Puram, S. V. et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell 171, 1611–1624 (2017).

    Article CAS Google Scholar

  • Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

    Article CAS Google Scholar

  • Baron, M., et al. A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell populationstructure. Cell Syst. 3, 346–360.e4 (2016).

    Article Google Scholar

  • Lappalainen, T. & Greally, J. M. Associating cellular epigenetic models with human phenotypes. Nat. Rev. Genet. 18, 441–451 (2017).

    Article CAS Google Scholar

  • He, Z. et al. Comprehensive transcriptome analysis of neocortical layers in humans, chimpanzees and macaques. Nat. Neurosci. 20, 886–895 (2017).

    Article CAS Google Scholar

  • Schelker, M. et al. Estimation of immune cell content in tumour tissue using single-cell RNA-seq data. Nat. Commun. 8, 2032 (2017).

    Google Scholar

  • Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12, 453–457 (2015).

    Article CAS Google Scholar

  • Ziegenhain, C. et al. Comparative analysis of single-cell RNA sequencing methods. Mol. Cell 65, 631–643.e634 (2017).

    Article CAS Google Scholar

  • Cancer Genome Atlas Network. Genomic classification of cutaneous melanoma. Cell 161, 1681–1696 (2015).

    Article Google Scholar

  • Dvinge, H. et al. Sample processing obscures cancer-specific alterations in leukemic transcriptomes. Proc. Natl Acad. Sci. USA 111, 16802–16807 (2014).

    Article CAS Google Scholar

  • Kadić, E., Moniz, R. J., Huo, Y., Chi, A. & Kariv, I. Effect of cryopreservation on delineation of immune cell subpopulations in tumor specimens as determined by multiparametric single cell mass cytometry analysis. BMC Immunol. 18, 6 (2017).

    Article Google Scholar

  • Chen, P.-L., et al. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov. 6, 827–837 (2016).

    Article Google Scholar

  • Segerstolpe, A. et al. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab. 24, 593–607 (2016).

    Article CAS Google Scholar

  • Gaujoux, R. & Seoighe, C. CellMix: a comprehensive toolbox for gene expression deconvolution. Bioinformatics 29, 2211–2212 (2013).

    Article CAS Google Scholar

  • Liebner, D. A., Huang, K. & Parvin, J. D. MMAD: microarray microdissection with analysis of differences is a computational tool for deconvoluting cell type-specific contributions from tissue samples. Bioinformatics 30, 682–689 (2014).

    Article CAS Google Scholar

  • Moffitt, R. A. et al. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat. Genet. 47, 1168–1178 (2015).

    Article CAS Google Scholar

  • Shen-Orr, S. S. et al. Cell type-specific gene expression differences in complex tissues. Nat. Methods 7, 287–289 (2010).

    Article CAS Google Scholar

  • Zhong, Y., Wan, Y. W., Pang, K., Chow, L. M. & Liu, Z. Digital sorting of complex tissues for cell type-specific gene expression profiles. BMC Bioinformatics 14, 89 (2013).

    Article Google Scholar

  • Zuckerman, N. S., Noam, Y., Goldsmith, A. J. & Lee, P. P. A self-directed method for cell-type identification and separation of gene expression microarrays. PLoS Comput. Biol. 9, e1003189 (2013).

    Article CAS Google Scholar

  • Onuchic, V. et al. Epigenomic deconvolution of breast tumors reveals metabolic coupling between constituent cell types. Cell Rep. 17, 2075–2086 (2016).

    Article CAS Google Scholar

  • Green, M. R. et al. Mutations in early follicular lymphoma progenitors are associated with suppressed antigen presentation. Proc. Natl Acad. Sci. USA 112, E1116–E1125 (2015).

    Article CAS Google Scholar

  • Gentles, A. J. et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 21, 938–945 (2015).

    Article CAS Google Scholar

  • Thorsson, V. et al. The immune landscape of cancer. Immunity 48, 812–830.e814 (2018).

    Article CAS Google Scholar

  • Ahn, J. et al. DeMix: deconvolution for mixed cancer transcriptomes using raw measured data. Bioinformatics 29, 1865–1871 (2013).

    Article CAS Google Scholar

  • Wang, Z. et al. Transcriptome deconvolution of heterogeneous tumor samples with immune infiltration. iScience 9, 451–460 (2018).

    Article CAS Google Scholar

  • Alizadeh, A. A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000).

    Article CAS Google Scholar

  • Golub, T. R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999).

    Article CAS Google Scholar

  • Bild, A. H. et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439, 353–357 (2006).

    Article CAS Google Scholar

  • Lenz, G. et al. Stromal gene signatures in large-B-cell lymphomas. N. Engl. J. Med. 359, 2313–2323 (2008).

    Article CAS Google Scholar

  • Whitney, A. R. et al. Individuality and variation in gene expression patterns in human blood. Proc. Natl Acad. Sci. USA 100, 1896–1901 (2003).

    Article CAS Google Scholar

  • Jiang, Y. et al. CREBBP inactivation promotes the development of HDAC3-dependent lymphomas. Cancer Discov. 7, 38–53 (2017).

    Article CAS Google Scholar

  • Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature 489, 519–525 (2012).

    Article Google Scholar

  • Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543–550 (2014).

    Article Google Scholar

  • Lambrechts, D., et al. Phenotype molding of stromal cells in the lung tumor microenvironment. Nat. Med. 24, 1277–1289 (2018).

    Article CAS Google Scholar

  • Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).

    Article CAS Google Scholar

  • Akbani, R., et al. Genomic classification of cutaneous melanoma. Cell 161, 1681–1696.

  • Curtin, J. A. et al. Distinct sets of genetic alterations in melanoma. N. Engl. J. Med 353, 2135–2147 (2005).

    Article CAS Google Scholar

  • Wherry, E. J. & Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 15, 486–499 (2015).

    Article CAS Google Scholar

  • Postow, M. A., Callahan, M. K. & Wolchok, J. D. Immune checkpoint blockade in cancer therapy. J. Clin. Oncol.. 33, 1974–1982 (2015).

    Article CAS Google Scholar

  • Anderson, A. C., Joller, N. & Kuchroo, V. K. Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity 44, 989–1004 (2016).

    Article CAS Google Scholar

  • Baitsch, L. et al. Exhaustion of tumor-specific CD8+ T cells in metastases from melanoma patients. J. Clin. Invest.. 121, 2350–2360 (2011).

    Article CAS Google Scholar

  • Van Allen, E. M. et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350, 207–211 (2015).

    Article Google Scholar

  • Redman, J. M., Gibney, G. T. & Atkins, M. B. Advances in immunotherapy for melanoma. BMC Med. 14, 20 (2016).

    Article Google Scholar

  • Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).

    Article CAS Google Scholar

  • Kvistborg, P. et al. Anti-CTLA-4 therapy broadens the melanoma-reactive CD8+ T cell response. Sci. Transl. Med. 6, 254ra128 (2014).

    Article Google Scholar

  • Daud, A. I. et al. Tumor immune profiling predicts response to anti–PD-1 therapy in human melanoma. J. Clin. Invest. 126, 3447–3452 (2016).

    Article Google Scholar

  • Nathanson, T. et al. Somatic mutations and neoepitope hom*ology in melanomas treated with CTLA-4 blockade. Cancer Immunol. Res. 5, 84–91 (2017).

    Article CAS Google Scholar

  • Cao, J. et al. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 357, 661–667 (2017).

    Article CAS Google Scholar

  • Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411 (2018).

    Article CAS Google Scholar

  • Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36, 421 (2018).

    Article CAS Google Scholar

  • Chakravarthy, A. et al. Pan-cancer deconvolution of tumour composition using DNA methylation. Nat. Commun. 9, 3220 (2018).

    Article Google Scholar

  • Corces, M. R., et al. Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat. Genet. 48, 1193–1203 (2016).

    Article CAS Google Scholar

  • Abbas, A. R. et al. Immune response in silico (IRIS): immune-specific genes identified from a compendium of microarray expression data. Genes Immun. 6, 319–331 (2005).

    Article CAS Google Scholar

  • Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article CAS Google Scholar

  • Levy, R. et al. Active idiotypic vaccination versus control immunotherapy for follicular lymphoma. J. Clin. Oncol. 32, 1797–1803 (2014).

    Article CAS Google Scholar

  • Allantaz, F. et al. Expression profiling of human immune cell subsets identifies miRNA-mRNA regulatory relationships correlated with cell type specific expression. PLoS ONE 7, e29979 (2012).

    Article CAS Google Scholar

  • Compagno, M. et al. Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma. Nature 459, 717–721 (2009).

    Article CAS Google Scholar

  • Jourdan, M. et al. An in vitro model of differentiation of memory B cells into plasmablasts and plasma cells including detailed phenotypic and molecular characterization. Blood 114, 5173–5181 (2009).

    Article CAS Google Scholar

  • Kiaii, S. et al. Follicular lymphoma cells induce changes in T-cell gene expression and function: potential impact on survival and risk of transformation. J. Clin. Oncol. 31, 2654–2661 (2013).

    Article CAS Google Scholar

  • Nakaya, H. I. et al. Systems biology of vaccination for seasonal influenza in humans. Nat. Immunol. 12, 786–795 (2011).

    Article CAS Google Scholar

  • Tatlow, P. J. & Piccolo, S. R. A cloud-based workflow to quantify transcript-expression levels in public cancer compendia. Sci. Rep. 6, 39259 (2016).

    Article CAS Google Scholar

  • Milpied, P. et al. Germinal center program de-synchronization and intra-patient heterogeneity in follicular lymphoma B-cells revealed by integrative single-cell analysis. Blood 130, 41–41 (2017).

    Google Scholar

  • Vallejos, C. A., Risso, D., Scialdone, A., Dudoit, S. & Marioni, J. C. Normalizing single-cell RNA sequencing data: challenges and opportunities. Nat. Methods 14, 565–571 (2017).

    Article CAS Google Scholar

  • Stegle, O., Teichmann, S. A. & Marioni, J. C. Computational and analytical challenges in single-cell transcriptomics. Nat. Rev. Genet. 16, 133–145 (2015).

    Article CAS Google Scholar

  • Hicks, S. C., Townes, F. W., Teng, M. & Irizarry, R. A. Missing data and technical variability in single-cell RNA-sequencing experiments. Biostatistics, 9, 562–578 (2018).

  • Venet, D., Pecasse, F., Maenhaut, C. & Bersini, H. Separation of samples into their constituents using gene expression data. Bioinformatics 17 (Suppl. 1), S279–S287 (2001).

  • Abbas, A. R., Wolslegel, K., Seshasayee, D., Modrusan, Z. & Clark, H. F. Deconvolution of blood microarray data identifies cellular activation patterns in systemic lupus erythematosus. PLoS ONE 4, e6098 (2009).

    Article Google Scholar

  • Zhong, Y. & Liu, Z. Gene expression deconvolution in linear space. Nat. Methods 9, 8–9 (2012); author reply 9, 9 (2012).

  • Lee, D. D. & Seung, H. S. Algorithms for non-negative matrix factorization. In Proc. 13th International Conference on Neural Information Processing Systems (eds. Leen, T.K. et al.) 535–541 (MIT Press, 2000).

  • Bacher, R. et al. SCnorm: robust normalization of single-cell RNA-seq data. Nat. Methods 14, 584 (2017).

    Article CAS Google Scholar

  • Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127 (2007).

    Article Google Scholar

  • Determining cell type abundance and expression from bulk tissues with digital cytometry (2024)
    Top Articles
    Your Guide to Becoming a Certified Pharmacy Technician
    Cary Elwes’ Wife Lisa Marie Kubikoff: Everything To Know About Their Marriage
    Aged Grimm Character Nyt Crossword
    Antonym For Proton
    Amazon Ups Drop Off Locations Near Me
    Allegheny Clinic Primary Care North
    Logo Variations - DreamWorks Animation
    3472542504
    Swap Shop Elberton Ga
    Ravens 24X7 Forum
    M&T Bank Atm Locations Near Me
    Blackboard Utoledo
    Ucf Net Price Calculator
    Weather Channel Quincy
    Anchoring in Masonry Structures – Types, Installation, Anchorage Length and Strength
    Partyline Ads for Wednesday, September 11, 2024
    Elisabeth Fuchs, Conductor : Magazine : salzburg.info
    Ktbs Payroll Login
    Post Crescent Obituary
    John Wick Megashare
    Watch Psychological Movies Online for FREE | 123Movies
    Bfri Forum
    Po Box 790447 St Louis Mo 63179
    Bollywood Movies 123Movies
    N33.Ultipro
    Peplowski v. 99 Cents only Stores LLC, 2:21-cv-01990-ART-EJY
    Ts Central Nj
    Chicken Coop Brookhaven Ms
    Broncos vs. Seahawks: How to Watch NFL Week 1 Online Today
    Keanu Reeves cements his place in action genre with ‘John Wick: Chapter 4’
    352-730-1982
    Hubspot Community
    Adult Theather Near Me
    Alexis Drake Donation Request
    Does Iherb Accept Ebt
    Osrs Desert Heat
    O'reilly's In Monroe Georgia
    Exterior Ballistics Calculator
    Taika Waititi Birth Chart
    Star News Mugshots
    Fighting Darius by Nicole Riddley - GALATEA
    GW2 Fractured update patch notes 26th Nov 2013
    Gregory (Five Nights at Freddy's)
    Linkbuilding Specialist Amsterdam
    Showbiz Waxahachie Bowling Hours
    Hr Central Luxottica Benefits
    Ultimate Guide to Los Alamos, CA: A Small Town Big On Flavor
    Cambridge Assessor Database
    Dragith Nurn Rs3
    Synergy Grand Rapids Public Schools
    Ap Bio Unit 2 Progress Check Mcq
    Winta Zesu Net Worth
    Latest Posts
    Article information

    Author: Pres. Lawanda Wiegand

    Last Updated:

    Views: 6087

    Rating: 4 / 5 (71 voted)

    Reviews: 94% of readers found this page helpful

    Author information

    Name: Pres. Lawanda Wiegand

    Birthday: 1993-01-10

    Address: Suite 391 6963 Ullrich Shore, Bellefort, WI 01350-7893

    Phone: +6806610432415

    Job: Dynamic Manufacturing Assistant

    Hobby: amateur radio, Taekwondo, Wood carving, Parkour, Skateboarding, Running, Rafting

    Introduction: My name is Pres. Lawanda Wiegand, I am a inquisitive, helpful, glamorous, cheerful, open, clever, innocent person who loves writing and wants to share my knowledge and understanding with you.